On Deferred Statistical Convergence of Sequences of Sets in Metric Space

M. Altnok, B. İnan, M. Küşükaslan

Abstract.
In this paper mainly, Wijsman deferred statistical convergence of sequence of sets in an arbitrary metric space is defined and some basic theorems are given. Besides new results, some results in this paper are the generalization of the results given in [3], [15] and [18].

2010 AMS Classification: 40A05, 40C05
Keywords: deferred statistical convergence, Wijsman deferred statistical convergence

1. INTRODUCTION

The concept of statistical convergence for real valued sequences has been introduced by Fast and Steinhaus independently in the same year 1951. Since then, several authors (Some of them, Fridy [6], Fridy-Miller [7], Fridy-Orhan [8], Kaya, et.al. [9], Kolk [10] and Mursaleen [14], e.t.c.) investigated this subject and it is applied different areas of mathematics, such as summability theory, analytic number theory, Fourier series, e.t.c.

Let K be a subset of \mathbb{N} and $K(n) = \{k \leq n : k \in \mathbb{N}\}$. Then the asymptotic density of K is defined as follows if the limit exists

$$\delta(K) := \lim_{n \to \infty} \frac{|K(n)|}{n}$$

where the vertical bars denotes the cardinality of the inside set.

On the contrary to the convergence of the real valued sequences, in literature, there are only well known three type convergence method for sequence of sets: Wijsman, Hausdorff and Kuratowski (see [2], [11], [19]).

Beer [3] interested Kuratowski convergence of sequence of sets and obtained the Arzela-Ascoli Theorem from the compactness theorem for sequence of sets.

Nuray and Rhoades [15] defined Wijsman statistical convergence of sequence of sets. Later, in the paper [18] by using lacunary sequence, this concept is generalized to the lacunary statistical convergence and some parallel results in [15] is given.
Let us start with fundamental definitions.

Let \((X, \rho)\) be a metric space. For any nonempty closed subsets \(A, A_k \subseteq X\), we say that the sequence \((A_k)\) is Wijsman convergent to \(A\) if,
\[
\lim_{k \to \infty} d_x(A_k) = d_x(A)
\]
for each \(x \in X\).

In (1.1) the symbol \(d_x(B)\) denotes the distance of the point \(x\) to the set \(B\) and defined by
\[
d_x(B) := \inf\{\rho(x, a) : a \in B\}
\]

Wijsman convergency of the sequence \((A_n)\) to \(A\) is denoted by \(W - \lim A_n = A\).

In [1], Agnew defined the deferred Cesàro mean as a generalization of Cesàro mean for real or complex valued sequences \(x = (x_n)\) by
\[
\frac{1}{q(n) - p(n)} \sum_{k=p(n)+1}^{q(n)} x_k
\]
where \(p = (p(n))\) and \(q = (q(n))\) are the sequences of non-negative integers satisfying
\[
p(n) < q(n) \text{ and } \lim_{n \to \infty} q(n) = \infty.
\]

Throughout the paper, we will use \(p\) and \(q\) instead of \(p(n)\) and \(q(n)\) only for simplicity.

The sequence \((A_k)\) is said to be Wijsman strongly deferred Cesàro summable to the set \(A\) if for each \(x \in X\),
\[
\lim_{n \to \infty} \frac{1}{q - p} \sum_{k=p+1}^{q} |d_x(A_k) - d_x(A)| = 0
\]
hold. In this case, we write \(WD - \lim_{n \to \infty} A_k = A\).

Deferred density of \(K \subset \mathbb{N}\) is defined as if the limit exists:
\[
\delta_0(K) := \lim_{n \to \infty} \frac{1}{q - p} |\{p < k \leq q : k \in K\}|.
\]

The sequence \((A_k)\) is said to be Wijsman deferred statistically convergent to \(A\) if for every \(\varepsilon > 0\) and \(x \in X\),
\[
\lim_{n \to \infty} \frac{1}{q - p} |\{p < k \leq q : |d_x(A_k) - d_x(A)| \geq \varepsilon\}| = 0
\]
hold. In this case, we write \(WDS - \lim_{k \to \infty} A_k = A\).

If we consider the cases, (i) \(p = 0\), \(q = n\) and (ii) \(p = k_n-1\), \(q = k_n\) for a lacunary sequence \(\theta = (k_n)\) in (1.4) and (1.3), these two concept coincide with Wijsman statistical convergence-Wijsman strongly Cesàro summability and Wijsman lacunary statistical convergence-Wijsman lacunary strongly summability of sequence of sets (see [15],[18]) respectively.

Theorem 1.1. Let \((X, \rho)\) be a metric space. If \((A_n)_{n \in \mathbb{N}}, (B_n)_{n \in \mathbb{N}}\) and \((C_n)_{n \in \mathbb{N}}\) are sequences of sets such that the inclusion \(A_n \subset B_n \subset C_n\) hold for all \(n \in \mathbb{N}\). Then, the following statements are hold.

\begin{itemize}
 \item [(i)] If \(W - \lim A_n = W - \lim C_n = T\), then \(W - \lim B_n = T\),
 \item [(ii)] If \(WDS - \lim A_n = WDS - \lim C_n = T\), then \(WDS - \lim B_n = T\).
\end{itemize}
Proof. The case (i) can be proof easily by using standart methods of analysis. So, it is omitted here.

(ii) Let $x \in X$ be an arbitrary fixed point and consider the sequences $(d_{x}(A_{n}))_{n \in \N}$, $(d_{x}(B_{n}))_{n \in \N}$ and $(d_{x}(C_{n}))_{n \in \N}$. It is clear from the inclusion $A_{n} \subseteq B_{n} \subseteq C_{n}$ that the inequality

$$d_{x}(C_{n}) \leq d_{x}(B_{n}) \leq d_{x}(A_{n})$$

holds for all $n \in \N$. From this inequality, we have

$$\{ p < k \leq q : |d_{x}(B_{k}) - d_{x}(T)| \geq \epsilon \} =$$

$$= \{ p < k \leq q : d_{x}(B_{k}) \geq d_{x}(T) + \epsilon \} \cup$$

$$\cup\{ p < k \leq q : d_{x}(B_{k}) \leq d_{x}(T) - \epsilon \} \subseteq \{ p < k \leq q : d_{x}(A_{k}) \geq d_{x}(T) + \epsilon \} \cup$$

$$\cup\{ p < k \leq q : d_{x}(C_{k}) \leq d_{x}(T) - \epsilon \}$$

for $\epsilon > 0$. It is also clear that the following inclusion

$$\{ p < k \leq q : |d_{x}(A_{k}) - d_{x}(T)| \geq \epsilon \} \supset \{ p < k \leq q : d_{x}(A_{k}) \geq d_{x}(T) + \epsilon \},$$

and

$$\{ p < k \leq q : |d_{x}(C_{k}) - d_{x}(T)| \geq \epsilon \} \supset \{ p < k \leq q : d_{x}(C_{k}) \leq d_{x}(T) - \epsilon \}$$

are true and we have

$$\delta_{D}(\{ p < k \leq q : d_{x}(A_{k}) \geq d_{x}(T) + \epsilon \}) = 0,$$

$$\delta_{D}(\{ p < k \leq q : d_{x}(C_{k}) \leq d_{x}(T) - \epsilon \}) = 0.$$

Therefore,

$$\delta_{D}(\{ p < k \leq q : |d_{x}(B_{k}) - d_{x}(T)| \geq \epsilon \}) = 0.$$

This gives the desired proof.

\[\square \]

Definition 1.2. Let $(A_{n})_{n \in \N}$ and $(B_{n})_{n \in \N}$ be sequences of sets. If deferred density of $\{ n \in \N : A_{n} \neq B_{n} \}$ is zero, then we say that the sequence $(A_{n})_{n \in \N}$ is deferred almost all equal to the sequence $(B_{n})_{n \in \N}$ and it is denoted by $(A_{n}) \equiv (B_{n}) \ (D - a.a.e.)$.

Theorem 1.3. Let (X, ρ) be a metric space, $(A_{n})_{n \in \N}$ and $(B_{n})_{n \in \N}$ be sequences of sets such that $(A_{n}) \equiv (B_{n}) \ (D - a.a.e.)$. Then, Wijsman deferred statistical convergence of the sequence $(A_{n})_{n \in \N}$ implies Wijsman deferred statistical convergence of the sequence $(B_{n})_{n \in \N}$, vice versa.

Proof. Assume that $WDS - \lim_{n \to \infty} A_{n} = A$, i.e.

$$\lim_{n \to \infty} \frac{1}{q - p}\{| p < k \leq q : |d_{x}(A_{k}) - d_{x}(T)| \geq \epsilon \} = 0$$

holds for $x \in X$.

Since $A_{k} \neq B_{k} \ (D - a.a.e.)$, then we have

3
Let \(\lim_{n \to \infty} \sum_{k=p+1}^{q} |d_x(A_k) - d_x(A)| = 0 \). Also, the set
\[\{ p < k \leq q : A_k \neq B_k \} \]
can be represent as
\[\{ p < k \leq q : |d_x(B_k) - d_x(A)| \geq \varepsilon \} \]
for the \(k \) when \(|d_x(B_k) - d_x(A)| \geq \varepsilon \).

From (1.6), (1.7) and (1.8) we have
\[\lim_{n \to \infty} \frac{1}{q-p} \sum_{k=p+1}^{q} |d_x(A_k) - d_x(A)| = 0 \]
and this gives the proof. The converse case can be proved suitable changes. \(\square \)

Corollary 1.4. Let \((X, \rho) \) be a metric space, \((A_n)_{n \in \mathbb{N}}, (B_n)_{n \in \mathbb{N}} \) and \((C_n)_{n \in \mathbb{N}} \) be a sequences of sets such that \(A_n \subset B_n \subset C_n \) \((D - a.a.e.) \). If \(WDS - \lim_{n \to \infty} A_n = WDS - \lim_{n \to \infty} C_n = T \), then \(WDS - \lim_{n \to \infty} B_n = T \).

Definition 1.5. A sequence \((A_n)_{n \in \mathbb{N}} \) of sets is said to be bounded if for each \(x \in X \) there exists positive \(M_x \) such that \(d_x(A_n) < M_x \) for all \(n \in \mathbb{N} \). The set of all bounded sequence of sets is denoted by \(L_\infty \), i.e.,
\[L_\infty := \{ (A_n)_{n \in \mathbb{N}} : \sup_{n \in \mathbb{N}} d_x(A_n) < \infty \text{ for each } x \in X \}. \]

Theorem 1.6. Let \((X, \rho) \) be a metric space, \((A_n)_{n \in \mathbb{N}} \) be a sequence of sets and \(A \) be a nonempty closed subset of \(X \). Then, the following statements are true:
(i) If \(WD - \lim_{n \to \infty} A_n = A \), then \(WDS - \lim_{n \to \infty} A_n = A \).
(ii) The converse of (i) is not true in general.
(iii) \(WDS \cap L_\infty = WD \cap L_\infty \).

Proof. (i) Since \(WD - \lim_{n \to \infty} A_n = A \), then we have
\[\lim_{n \to \infty} \frac{1}{q-p} \sum_{k=p+1}^{q} |d_x(A_k) - d_x(A)| = 0 \]
for \(x \in X \). Therefore, the following inequality
\[\frac{1}{q-p} \sum_{k=p+1}^{q} |d_x(A_k) - d_x(A)| \geq \frac{1}{q-p} \sum_{k=p+1}^{q} |d_x(A_k) - d_x(A)| \]
\[\geq \frac{1}{q-p} | \{ p < k \leq q : |d_x(A_k) - d_x(A)| \geq \varepsilon \} | \varepsilon \]
hold for every \(\varepsilon > 0 \). Letting limit for \(n \to \infty \) we obtain desired proof.

(ii) Let us consider the sequence \((A_k)_{k \in \mathbb{N}} \) as follows for an arbitrary \(p \) and \(q \) satisfying (1.1):
\[A_k = \begin{cases} \{ k \}, & p < k \leq p + \lceil \sqrt{q-p} \rceil, \quad n \in \mathbb{N}, \\ \{ 0 \}, & \text{otherwise}. \end{cases} \]
It is clear that
\[
\lim_{n \to \infty} \frac{1}{q-p} \sum_{k=p+1}^{q} |d_x(A_k) - d_x(A)| = \lim_{n \to \infty} \frac{1}{q-p} \left[\sqrt{q-p} \right],
\]
but
\[
\lim_{n \to \infty} \frac{1}{q-p} \sum_{k=p+1}^{q} |d_x(A_k) - d_x(A)| \geq \lim_{n \to \infty} \frac{\sqrt{q-p}(\sqrt{q-p} + 1)}{2(q-p)} = \frac{1}{2} \neq 0.
\]

This shows that the converse of (i) is not true.

(iii) Let \((A_k) \in WDS \cap L_\infty \) be an arbitrary sequence of sets. From the boundedness of \((A_k) \in N \) for each \(x \in X \) there exists a positive number \(M_x \) such that \(d_x(A_k) \leq M_x \) for all \(k \in N \). Therefore,
\[
|d_x(A_k) - d_x(A)| \leq d_x(A_k) + d_x(A) \leq M_x + d_x(A)
\]
holds for all \(x \in X \). So, for any \(\varepsilon > 0 \), we have
\[
\frac{1}{q-p} \sum_{k=p+1}^{q} |d_x(A_k) - d_x(A)| = \frac{1}{q-p} \left(\sum_{k=p+1}^{q} |d_x(A_k) - d_x(A)| + \sum_{k=p+1}^{q} |d_x(A_k) - d_x(A)| \right)
\]
\[
\leq \frac{2M_x'}{q-p} \left\{ \sum_{k=p+1}^{q} |d_x(A_k) - d_x(A)| \geq \varepsilon \right\} + \varepsilon
\]
where \(M_x' = M_x + d_x(A) \).

After taking limit for \(n \to \infty \), the proof is obtained.

Definition 1.7. A method \(D[p, q] \) is called properly deferred, if the sequence \(\left\{ \frac{p}{q-p} \right\} \) is bounded in addition to \(p = (p_n)_{n \in N} \) and \(q = (q_n)_{n \in N} \) are satisfying (1.2).

In the following theorem the method \(WS \) and \(WDS \) are compared under some restriction on \(p(n) \) and \(q(n) \).

Theorem 1.8. \(WS \subset WDS \) if and only if \(D \) is proper.
Proof. Let \((A_n)_{n\in\mathbb{N}}\) be a sequence of closed subsets of \((X,d)\) and assume that \(WS - \lim_{n \to \infty} A_n = A\). Then, \(WDS\) transformation of the sequence \((A_n)_{n\in\mathbb{N}}\)
is
\[
\frac{1}{q-p}|\left\{ p \leq q : |d_x(A_k) - d_x(A)| \geq \varepsilon \right\}|
\]
\[
\frac{1}{q-p}|\left\{ 1 \leq k \leq q : |d_x(A_k) - d_x(A)| \geq \varepsilon \right\}|
\]
\[
- \frac{1}{q-p}|\left\{ 1 \leq k \leq p : |d_x(A_k) - d_x(A)| \geq \varepsilon \right\}|
\]
\[
\left(\frac{q}{q-p} \right) \frac{1}{q}|\left\{ 1 \leq k \leq q : |d_x(A_k) - d_x(A)| \geq \varepsilon \right\}|
\]
\[
- \left(\frac{p}{q-p} \right) \frac{1}{p}|\left\{ 1 \leq k \leq p : |d_x(A_k) - d_x(A)| \geq \varepsilon \right\}|
\]
Regarding to the above equality we can say that \(WDS\) transformation of the sequence \((d_x(A_n))\) is the linear combination of the \(WS\) transformation of the sequence \((d_x(A_n))\).
It is clear from the Silverman-Toeplitz Theorem \([13]\) that this transformation is regular if and only if \(\frac{p}{q} + \frac{q}{q-p}\) is bounded. That is, the sequence \(\frac{p}{q}\) must be bounded. \(\square\)

Theorem 1.9. \(WS \supset WDS[p, q]\) when \(q(n) = n\) for all \(n \in \mathbb{N}\).

Proof. Let \((A_n)_{n\in\mathbb{N}}\) be a sequence of sets which is \(WDS\)-convergent to a set \(A \subset X\) for \(x \in X\). We shall show that \(A_n \to A(WS)\). Let for each \(n \in \mathbb{N}\)
\[
p(n) = n^{(1)} > p(n^{(1)}) = n^{(2)} > p(n^{(2)}) = n^{(3)} > \cdots,
\]
From this partition we have
\[
\{ k \leq n : |d_x(A_k) - d_x(A)| \geq \varepsilon \} = \{ k \leq n^{(1)} : |d_x(A_k) - d_x(A)| \geq \varepsilon \}
\]
\[
\cup \{ n^{(1)} < k \leq n : |d_x(A_k) - d_x(A)| \geq \varepsilon \}
\]
and
\[
\{ k \leq n^{(1)} : |d_x(A_k) - d_x(A)| \geq \varepsilon \} = \{ k \leq n^{(2)} : |d_x(A_k) - d_x(A)| \geq \varepsilon \}
\]
\[
\cup \{ n^{(2)} < k \leq n^{(1)} : |d_x(A_k) - d_x(A)| \geq \varepsilon \}
\]
If we continue this process consecutively we obtain
\[
\{ k \leq n^{(h-1)} : |d_x(A_k) - d_x(A)| \geq \varepsilon \} = \{ k \leq n^{(h)} : |d_x(A_k) - d_x(A)| \geq \varepsilon \}
\]
\[
\cup \{ n^{(h)} < k \leq n^{(h-1)} : |d_x(A_k) - d_x(A)| \geq \varepsilon \}
\]
where \(h\) is a certain positive integer such that \(n^{(h)} \geq 1\) and \(n^{(h+1)} = 0\).
From the above discussion, we have
\[
\frac{1}{n}\sum_{m=0}^{h-1} \left(\frac{n^{(m)} - n^{(m+1)}}{n} \right) L_m
\]
for every \(n \), where \(L_m \) is a sequence as follows
\[
(L_m) := \left(\frac{1}{n(m) - n(m+1)} \left| \{ n(m+1) < k \leq n(m) : |d_x(A_k) - d_x(A)| \geq \varepsilon \} \right| \right).
\]

Let us consider the matrix \(T = (t_{n,m}) \) as
\[
t_{n,m} := \begin{cases} \frac{n(m) - n(m+1)}{n}, & m = 0, 1, 2, \ldots, h \\ 0, & \text{otherwise}. \end{cases}
\]
where \(n(0) = n \).

It is clear that Wijsman statistical transformation of the sequence \((A_n)_{n \in \mathbb{N}} \) is the \(T \) transformation of the sequence \((L_m) \).

The matrix \(T = (t_{n,m}) \) is satisfied regularity conditions (see in [13],[16]). Therefore, the sequence \((A_n)_{n \in \mathbb{N}} \) Wijsman statistical convergence to \(A \) at the point \(x \in X \).

From Theorem 1.8 and Theorem 1.9, we have following result.

Corollary 1.10. \(\text{WS} = \text{WDS}[p,n] \) if and only if
\[
\left(\frac{p}{n-p} \right)
\]
is bounded.

Theorem 1.11. Let \(q = (q(n))_{n \in \mathbb{N}} \) be a sequence which contains almost all natural numbers. Then,
\[
\text{WDS} - \lim_{n \to \infty} A_n = A \implies \text{WS} - \lim_{n \to \infty} A_n = A.
\]

Proof. Let us choose sufficiently large natural numbers \(m \) such that the set
\[
\{ q(n) : n \in \mathbb{N} \}
\]
contains all natural numbers which is greater than \(m \). Then, we may set a sequence of natural numbers such that
\[
k_1 = k_2 = \cdots = k_m = 1
\]
and \(q_{k_n} = n \) for each \(n > m \).

Since \(\text{WDS} - \lim_{n \to \infty} A_n = A \) for \(p \) and \(q \), then we have
\[
\text{WDS} - \lim_{n \to \infty} A_n = A
\]
for \(p_{k_n} \) and \(q_{k_n} \). Therefore, theorem follows from Theorem 1.9. \(\square \)

From the above Theorems it is clear that any proper \(\text{WDS} \) method and \(\text{WS} \) method are mutually consistent. Unfortunately, this is not true for any two proper \(\text{WDS} \) method. For to see this, let us consider \(\text{WDS}[2n,4n] \) and \(\text{WDS}[2n-1,4n-1] \), and sequence of sets as
\[
A_n = \begin{cases} \{ \frac{n}{2} \}, & n \text{ is even}, \\ \{ \frac{n+1}{2} \}, & n \text{ is odd}. \end{cases}
\]

It is clear that
\[
\text{WDS}[2n,4n] - \lim_{n \to \infty} A_n = \{0\},
\]
\[
\text{WDS}[2n-1,4n-1] - \lim_{n \to \infty} A_n = \{1\}.
\]
and

$$WDS[2n-1, 4n-1] - \lim_{n \to \infty} A_n = \left\{ \frac{1}{2} \right\}.$$

Let us consider the sequences $p = (p(n)), q = (q(n)), p' = (p'(n))$ and $q' = (q'(n))$ such that

$$p \leq p' < q' \leq q$$

for all $n \in \mathbb{N}$.

In the following theorems by considering (1.9), the methods $WDS[p', q']$ and $WDS[p, q]$ are compared.

Theorem 1.12. If the sets $\{k : p < k \leq p'\}$ and $\{k : q' < k \leq q\}$ are finite for all $n \in \mathbb{N}$, then

$$WDS - \lim_{n \to \infty} A_n = A \ w.r.t \ (p' \ and \ q')$$

implies

$$WDS - \lim_{n \to \infty} A_n = A \ w.r.t \ (p \ and \ q).$$

Proof. Let us assume that for each $x \in X$ the sequence of sets $(A_n)_{n \in \mathbb{N}}$ is Wijsman deferred statistical convergent to A with respect to p' and q'. For an arbitrary $\varepsilon > 0$, we have

$$\{p < k \leq q : |d_x(A_k) - d_x(A)| \geq \varepsilon\} = \{p < k \leq p' : |d_x(A_k) - d_x(A)| \geq \varepsilon\} \cup \{p' < k \leq q' : |d_x(A_k) - d_x(A)| \geq \varepsilon\} \cup \{q' < k \leq q : |d_x(A_k) - d_x(A)| \geq \varepsilon\}.$$

It is also clear that following inequality

$$\frac{1}{q - p}|\{p < k \leq q : |d_x(A_k) - d_x(A)| \geq \varepsilon\}| \leq \frac{1}{q' - p'}|\{p < k \leq p' : |d_x(A_k) - d_x(A)| \geq \varepsilon\}| +$$

$$+ \frac{1}{q' - p'}|\{p' < k \leq q' : |d_x(A_k) - d_x(A)| \geq \varepsilon\}| +$$

$$+ \frac{1}{q' - p'}|\{q' < k \leq q : |d_x(A_k) - d_x(A)| \geq \varepsilon\}|$$

holds. On taking limit for $n \to \infty$, it is obtained that

$$\lim_{n \to \infty} \frac{1}{q - p}|\{p < k \leq q : |d_x(A_k) - d_x(A)| \geq \varepsilon\}| = 0.$$

Theorem 1.13. Under the condition (1.9), if $\left(\frac{p - q}{q - p}\right)$ is bounded then $WDS[p, q] \subset WDS[p', q']$.

Proof. Since the inclusion

$$\{p' < k \leq q' : |d_x(A_k) - d_x(A)| \geq \varepsilon\} \subset \{p < k \leq q : |d_x(A_k) - d_x(A)| \geq \varepsilon\},$$
is hold, then we have
\[
\frac{1}{q' - p'} \left\{ \left\{ p' < k \leq q' : \left| d_x(A_k) - d_x(A) \right| \geq \varepsilon \right\} \right\} \leq
\leq \frac{q - p}{q' - p'} \frac{1}{q - p} \left\{ \left\{ p < k \leq q : \left| d_x(A_k) - d_x(A) \right| \geq \varepsilon \right\} \right\}.
\]

If we take limit for \(n \to \infty \), the proof is completed. \(\square \)

References